TOWARDS A LOW CARBON DEVELOPMENT
-CONVENTIONAL METHODOLOGY OF DEVELOPMENT IN INDIA

- A MORE SUSTAINABLE APPROACH: PRINCIPLES AND METHODOLOGY
<table>
<thead>
<tr>
<th>STAGES OF HUMAN SOCIETY</th>
<th>DEVELOPMENTAL TOOLS / RESOURCES</th>
<th>DEVELOPMENTAL METHODOLOGY</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIBES</td>
<td>STONE TOOLS AND WEAPONS</td>
<td>GROUP HUNTING</td>
<td>LOSS OF MEGA FAUNA</td>
</tr>
<tr>
<td>AGRICULTURE</td>
<td>SETTLEMENTS / METAL</td>
<td>MONOCULTURE</td>
<td>LOSS OF BIODIVERSITY</td>
</tr>
<tr>
<td>RELIGIONS</td>
<td>HIERARCHICAL SOCIETY / URBANIZATION</td>
<td>INTERNAL EXPLOITATION</td>
<td>FEUDALISM / SLAVERY</td>
</tr>
<tr>
<td>INDUSTRIAL</td>
<td>COLONIES</td>
<td>EXTERNAL EXPLOITATION</td>
<td>STEALING FROM OTHER CULTURES / PEOPLE</td>
</tr>
<tr>
<td>POST INDUSTRIAL</td>
<td>FOSSIL ENERGY</td>
<td>EXPLOITATION OF THE PAST</td>
<td>STEALING FROM THE FUTURE</td>
</tr>
</tbody>
</table>
In India, the construction industry is the 2nd largest after agriculture. Every Re.1 investment in the construction industry causes an Rs.0.80 increment in GDP as against Rs.0.20 and Rs.0.14 in the fields of agriculture and manufacturing industry, respectively.

<table>
<thead>
<tr>
<th>investment in the construction industry (swarup&mahajan-2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount (in multiples of Rs. 100 Crores)</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>RESIDENTIAL CONSTRUCTION</td>
</tr>
<tr>
<td>Public</td>
</tr>
<tr>
<td>Private</td>
</tr>
<tr>
<td>total</td>
</tr>
<tr>
<td>NON-RESIDENTIAL CONSTRUCTION</td>
</tr>
<tr>
<td>Public</td>
</tr>
<tr>
<td>Private</td>
</tr>
<tr>
<td>total</td>
</tr>
<tr>
<td>CIVIL ENGINEERING CONSTRUCTION</td>
</tr>
<tr>
<td>Public</td>
</tr>
<tr>
<td>Private</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

The un-organized sector or owner driven development is a considerable market force in residential and non-residential development.

-ref: challenges before construction industry in India; A.Lakshar / CVR Murty. IIT.Kanpur
model of development
Low income and small town commercial / residential / slums......building typology origin?
Cultural influence?
Local builders model of development
RCC flat roof slabs – poor drainage, heat gain
Bad orientation of facades- no protection from rain
/ sun
Poor window design – ventilation / lighting
Developer driven model for upper + middle class
Gated communities – setting the trend in design / material use and life style for middle and lower income groups
- Loading design = (live / dead / earthquake / wind / impact) x 1.5 = 50% extra

- Structural engineers add another 20% in steel to compensate for poor quality in manufacturing.

- Contractors specify higher grade “Portland Pozzolana Cement of 53 grade” irrespective of type of structure. Leading to higher water use, poorer finishing and higher embodied energy.

- Home owners usually add another 10% cement in the mix due to poor quality workmanship.

“eventual steel / cement use for most building types is 30-35% more than required”

MOST BUILDINGS ARE NOT MAINTAINED AND / OR REMODELED EVERY 20-25 YRS LEADING TO BUILDING WASTE BEING ONE OF THE BIGGEST URBAN WASTE.
"Ordinary Portland Cement comes in two grades:
1. Ordinary Portland Cement — Grade-53
2. Ordinary Portland Cement — Grade-43

Grade-53 is a very superior quality of cement (conforming to IS:12269:1987) used for critical and heavy structures like bridges, multi-storey buildings, foundations and heavy and load bearing structures requiring typical and critical construction requirements.

- *This is the cement that is used everywhere today by both the organised and unorganised sector due to a myth that higher grade = better quality.*

Ordinary Portland Cement-Grade-43 is a high strength cement confirming of IS 8112:1989. The cement is ideally suitable for all kinds of normal constructions of buildings, commercial complexes and residential units. "
Participants in the construction industry and their knowledge base

1 – Developer / promoter – information on market / access to capital / active network with regulation agencies

2- owner / builder – information from local builders / other home owners / direct information from suppliers

3 – Builders / contractors – most learn on the job, some academic background, highly competitive environment, conflict between tight profit margins and fluctuating labor / material supply

4 – Planners / Architects – market driven / aesthetics oriented, no real influence over the market.....a service provider rather than trend setter

5- construction / project manager – more involved in the economics of the project rather than the engineering / technical / sustainability issues

6- construction labor – no technical training, no job security, learning on the job; carrying forward the practices handed to them without any bias.
• Mumbai produces about 10,000 tons of construction debris every day, 75% of which is dumped in natural water drainage channels, low lying lands, wet lands, along pavements and roads and in areas ear marked as green spaces.
Energy supply / urban sewerage / solid waste / water supply?
WHAT ARE SOLUTIONS / OPTIONS TO THESE ISSUES?

1- POLITICAL STRATEGIES – decentralization of utilities / citizens participation / transparent decision making to minimize waste & corruption

2 - SOCIAL AWARENESS / ACTIVISM – citizen groups to motivate and undertake direct participation and action / public information thru popular media on sanitation / energy / water / land use / green issues.

3 - EDUCATIONAL INSTITUTION – more vocational and technical institutes with on the job training for civic services like waste management, construction skills, secondary level health and sanitation workers.

4- PLANNING / DESIGN – revamp the planning and design education to meet the challenges of global crisis rather than continuing with production of designers with dreams of creating iconic cities / infrastructure / projects

5- ENGINEERING / TECHNICAL – provide multi-level education that answers the challenges of 21st century India with academic and technical skills - opportunities of job creation in green technologies.
Green / eco development principles

Planning
- Geophysical conditions in and around the site
- Habitat / vegetation / fauna / water movement context; cultural, social, networks and infrastructure
- Existing systems human and environmental climatic data

Building envelope design
- Minimize or design away the extraneous
- Integrate design aspects for multiplicity of function
- Design for all aspects of climate at all levels
- Design for durability and longevity
- Select materials that use their base resource most efficiently
- Design to maximise local and regional resources
- Use products with recyclable materials & recycled content
- Look for least toxic materials and manufacturing processes

Technologies / engineering options
- Appropriate solutions for issues that need engineering fixes
- Low energy input solutions
- Minimum operational and maintenance costs
- Adopt technologies that require minimum supervision and training
- Decentralized systems
The conceptual master plan of Auroville

A city with four zones:

1. Residential
2. Cultural
3. Industrial
4. International

Around the Matrimandir with a green belt surrounding it.
1. Mapping of contours

2. Mapping of existing land use and vegetation in and around the site

3. Mapping and analysis of urban connectivity: transport / social / utilities network

4. Rain fall data, water flow channels and identification of rain water management and harvesting systems
climate data and analysis for optimization of building layout, envelope design and orientation

1. shading day & lighting – north : south orientation for sun exclusion and wall shading
2. air temperature and movement – 20-38’ C with alternating land and sea breeze
3. relative humidity – 60 % (Jan) to 83% (Nov) with rainfall of 1200 mm per year
4. radiation received – min 10 hrs per day of sunshine
5. Wind speed – average 3 to 7 meters / sec with occasional cyclonic storms

land breeze
04.00 – 12.00 hrs

Sea breeze 14.00 – 02.00 hrs
Defining a pattern language
- Appropriate form for the climate
- sloping roofs; easy drainage
- overhangs that come down; sky glare and radiation
- roof ventilation
- open to sky terraces for evening and night use
- shading with trees
Play / experiment with materials to create variations rather than forcing a uniform design.
Use of transition spaces for and as living / dining / entry
indoor / outdoors division blurred
- Maximize volume to surface area ratio to achieve largest volume for least building material

- Efficient circulation pattern to minimize the built up area requirement

- Integrate storage / openings / furniture to reduce the add-on in finishing materials and time line
Multi level linkages of spaces - interactive
Roof shading devices
Prefabrication of elements to avoid wastage of time / materials
Roof level ventilation
Recycle material – wood / doors / pillars / hardware.....
Integrated landscaping with local species of vegetables / fruit trees / hardy ground cover to reduce water use to have a productive green space.
3 step planning

- decentralised biological recycling of our sewage,
- reduce the use of water and stop pumping pollutants into our water cycle and
- most important harvest rain water to recharge our aquifers.
Fossil fuel based energy, releasing the stored CO2 into the atmosphere will makes our future questionable on this planet!
Renewable energy sources like wind, sun, waves, geo-thermal and biomass are the way of the future, if we want to have a future.
The 3 step principle that goes into waste management is

- Reduction of waste generation (plastics and toxic products)
- Maximum use of products and energy
- Waste separation at source (organic and inorganic) like households, offices, institutions and industries
Imagine the world is made of only 100 inhabitants, then the world would have:

• 57 Asians, 21 Europeans, 15 Americans (north + south) and 8 Africans

• There would be 52 females and 48 males

• 70 of these 100 people would be non-white and non-Christians

• 6 of them will possess 60% of the wealth of the world while 80 people will be without homes.

• 70 of these will be illiterate and 50 will be dependent on the rest to survive.

• one person would be holding a university degree and one person would have a computer.

If you have something to eat, are wearing clothes, have a roof with a bed to sleep in every night then you are better than 75% of human population
And finally take remember
“Designing is taking responsibility for your imagination”